Compression of local slant stacks by the estimation of multiple local slopes and the matching pursuit decomposition

Author:

Hu Hao1,Liu Yike2,Osen Are3,Zheng Yingcai4

Affiliation:

1. Formerly Chinese Academy of Sciences, Institute of Geology and Geophysics, Beijing, China; presently University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..

2. Chinese Academy of Sciences, Institute of Geology and Geophysics, Beijing, China..

3. Statoil (Beijing) Technology Service Co., Ltd, Beijing, China..

4. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..

Abstract

Because local slant stacking increases the data dimension in beam migration, the volume of local slant stacks can be enormous and can obstruct efficient data processing. In addition, a proper beam compression algorithm can reduce the computation of ray tracing and beam mapping. Thus, compressing the local slant stacks with high fidelity can improve the efficiency of beam migration. A new approach is proposed to efficiently compress the local slant stacks. This approach combines the estimation of multiple local slopes based on the structure tensor to reduce the number of slopes, and the sparse representation for the slant stacked data via the matching pursuit decomposition to reduce the number of temporal samples. Furthermore, a new algorithm to estimate multiple local slopes based on the second-order structure tensor is proposed to handle the intersecting events efficiently. Several data examples indicated that the new compression algorithm required much less storage. Meanwhile, the new algorithm can restore the significant events and tolerate some random noise. The migration results determined that this compression algorithm does not obviously degrade the quality of the beam migration result, and it even makes the migration result more clear by suppressing the random noise smearing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3