Linking preferred orientations to elastic anisotropy in Muderong Shale, Australia

Author:

Kanitpanyacharoen Waruntorn1,Vasin Roman2,Wenk Hans-Rudolf3,Dewhurst David. N.4

Affiliation:

1. University of California, Department of Earth and Planetary Science, Berkeley, California, USA and Chulalongkorn University, Department of Geology, Faculty of Science, Bangkok, Thailand..

2. University of California, Department of Earth and Planetary Science, Berkeley, California, USA and Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Russia..

3. University of California, Department of Earth and Planetary Science, Berkeley, California, USA..

4. CSIRO Energy, Perth, Australia..

Abstract

The significance of shales for unconventional hydrocarbon reservoirs, nuclear waste repositories, and geologic carbon storage has opened new research frontiers in geophysics. Among many of its unique physical properties, elastic anisotropy had long been investigated by experimental and computational approaches. Here, we calculated elastic properties of Cretaceous Muderong Shale from Australia with a self-consistent averaging method based on microstructural information. The volume fraction and crystallographic preferred orientation distributions of constituent minerals were based on synchrotron x-ray diffraction experiments. Aspect ratios of minerals and pores, determined from scanning electron microscopy, were introduced in the self-consistent averaging. Our analysis suggested that phyllosilicates (i.e., illite-mica, illite-smectite, kaolinite, and chlorite) were dominant with [Formula: see text]. The shape of clay platelets displayed an average aspect ratio of 0.05. These platelets were aligned parallel to the bedding plane with a high degree of preferred orientation. The estimated porosity at ambient pressure was [Formula: see text] and was divided into equiaxial pores and flat pores with an average aspect ratio of 0.01. Our model gave results that compared satisfactorily with values derived from ultrasonic velocity measurements, confirming the validity and reliability of our approximations and averaging approach.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3