A theoretical and physical modeling analysis of the coupling between baseline elastic properties and time-lapse changes in determining difference amplitude variation with offset

Author:

Jabbari Shahin1,Wong Joe1,Innanen Kristopher A.1

Affiliation:

1. University of Calgary, Department of Geoscience, Calgary, Alberta, Canada..

Abstract

Perturbation theory has been widely used in many applications in seismology, more recently for time-lapse problems. We have formulated a scheme for modeling linear and nonlinear elastic time-lapse difference amplitude variation with offset data. We have expressed this framework as an expansion in orders of the baseline interface properties and time-lapse changes from the time of the baseline survey to the time of the monitor survey. We have examined our formulation with the numerical data used in literature for real time-lapse data. The results indicated to the first order that our framework for time-lapse difference data is in agreement with Landrø’s linear approximation. The higher order terms represented corrections appropriate for large P- and S-wave velocities and density contrasts in the reservoir from the time of the baseline survey to the time of the monitor survey. A physical modeling data set was acquired simulating a time-lapse problem to validate our theoretical results. Plexiglas, polyvinyl chloride (PVC), and phenolic slabs were used as proxy materials to simulate the cap rock and reservoir at the time of the baseline and monitor surveys, respectively. Reflected amplitudes were picked at Plexiglas-PVC and Plexiglas-phenolic interfaces and were corrected for geometric spreading, emergence angle, free surface, transmission loss, and radiation patterns. Our results indicated that higher order expansion terms, involving products of elastic time-lapse perturbation and baseline medium perturbation, matched laboratory data with significantly reduced error in comparison with linearized forms. We have concluded that in many plausible time-lapse scenarios, the increase in accuracy associated with higher order corrections that we observed enhanced the time-lapse modeling.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3