Horizontal contraction in image domain for velocity inversion

Author:

Shen Peng1,Symes William W.2

Affiliation:

1. Fomerly Shell International Exploration and Production; presently Chevron Corporation, Houston, Texas, USA..

2. Rice University, Department of Computational and Applied Mathematics, Houston, Texas, USA..

Abstract

A kinematically correct choice of velocity focuses subsurface offset image gathers at a zero offset. Infinitesimal warping from the current image toward its focus can be approximated by a horizontal contraction. The image residual can then be taken as the difference between the warped and the original image to account for the velocity error. Least-squares fitting of the effect of a velocity perturbation to this image-warping perturbation produces a tomographic velocity update. We evaluated a warping scheme based on the radial image derivative in the subsurface offset. We found that the corresponding gradient was free of the diffraction edge effect. We further enhanced the efficiency of the velocity update procedure via the use of a diagonal Hessian approximation. We developed a sequence of synthetic examples leading to a salt body inversion. The limitation of the method was argued and analyzed in the presence of refracting structures.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3