Air‐gun source instabilities

Author:

Dragoset Bill1,Hargreaves Neil2,Larner Ken1

Affiliation:

1. Western Geophysical Company, P.O. Box 2469, Houston, TX 77252

2. Western Geophysical Company, Wesgeco House, P.O. Box 18, 455 London Road, Isleworth, Middlesex, England TW7 5AB

Abstract

The signature of an air‐gun array can change over a period of time or even from one shot to the next. If the signature variations are large, then deterministic deconvolution, with an operator designed from a single signature or from an average signature, could produce errors significant enough to affect data interpretation. Possible sources of air‐gun instability include changes in gun positions, firing times, and pressures, gun failures, and scattering from the fluctuating rough ocean surface. If an air‐gun array were perfectly stable, after application of signature deconvolution the residual signatures for a sequence of shots would be identically shaped, broadband, zero‐phase wavelets. In practice, air‐gun instabilities lead to two major defects in band‐ limited residual signatures: the central portion of the wavelet can become asymmetrical, and unsuppressed energy can occur in the residual bubble region. Processing experiments done with synthesized air‐gun array signatures show that of all types of air‐gun instabilities likely to occur, only gun dropouts cause signature variations severe enough to affect data interpretation. Gun dropouts produce unsuppressed residual bubble energy that can show up as phantom events on a stacked section or that can obscure small‐amplitude events following large‐amplitude events. Neither gun dropouts nor any other kind of air‐gun instability has a significant effect on resolution within the seismic band. Since gun dropouts do not happen on a shot‐to‐shot basis and other instabilities are unimportant, there is no practical benefit to be gained by deriving and applying individual signature deconvolution operators for each shot. The influence of gun dropouts can be minimized through other actions taken in acquisition and processing.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Marine Vibrator Joint Industry Project: four years on;Exploration Geophysics;2018-10-01

2. Low-frequency acoustic signal created by rising air-gun bubble;GEOPHYSICS;2017-11-01

3. Robust nonstationary adaptive signature deconvolution;SEG Technical Program Expanded Abstracts 2017;2017-08-17

4. How rough sea affects marine seismic data and deghosting procedures;Geophysical Prospecting;2017-05-25

5. Characteristic Analysis of Pulse Discharge Hypocenter;IEEE Transactions on Plasma Science;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3