EcoSeis: A novel acquisition method for optimizing seismic resolution while minimizing environmental footprint

Author:

Naghizadeh Mostafa1,Vermeulen Peter1,Crook Andrea1,Birce Alyson1,Ross Stephanie1,Stanton Aaron2,Rodriguez Maximo3,Cookson Warren4

Affiliation:

1. OptiSeis Solutions Ltd., Calgary, Alberta, Canada..

2. Key Seismic Solutions Ltd., Calgary, Alberta, Canada..

3. Qeye, Calgary, Alberta, Canada..

4. Cenovus Energy, Calgary, Alberta, Canada..

Abstract

All exploration and production projects, whether for oil-and-gas, mining, or clean-technology applications, begin with an accurate image of the subsurface. Many technologies have been developed to enable the acquisition of cost-effective seismic data, with high-density land seismic programs becoming commonplace. However, as the industry progresses and the long-term surface footprint associated with these programs becomes better understood, new methods are needed to reduce the environmental impact of seismic data acquisition while maintaining sufficient subsurface resolution for accurate resource development. New acquisition geometries are typically easier to create than test in the field due to the high cost of field acquisition and processing. However, by using existing data acquired in a grid, one can decimate the original data set into multiple geometries and process them. This provides an opportunity to fully test new geometries without the expense of field acquisition. In this paper, we present processing, interpretation, and inversion tests from an existing ultra-high-density oil-sands seismic data set decimated based on ecologically improved program designs. We then measure and compare the results to understand the impact of these geometries on subsurface resolution.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Designing alternative 3D seismic surveys for reduced environmental footprints using the seismic trace density parameter;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3