Useful characteristics of shallow and deep marine CSEM responses inferred from 3D finite-difference modeling

Author:

Sasaki Yutaka12,Meju Max A.12

Affiliation:

1. Kyushu University, Department of Earth Resources Engineering, Fukuoka, Japan. .

2. Formerly Lancaster University, Department of Environmental Science, Lancaster, United Kingdom; presently Petronas Research, Subsurface Technology Department, Kajang, Malaysia. .

Abstract

Hydrocarbon reservoirs can be mapped if sufficient resistivity contrasts exist between them and their confining layers, but practical problems remain in target discrimination in deep and shallow waters, especially in the presence of heterogeneous overburden. We have developed an efficient 3D staggered-grid finite-difference controlled-source electromagnetic (CSEM) modeling code that enables study of the physics underlying some practical problems. We undertook a comparative analysis of reservoir detection in [Formula: see text]- and [Formula: see text]-deep waters using the simulated electric and magnetic field responses of a simple 3D reservoir. We examined the effect of two types of near-surface heterogeneity (mimicking disconnected gas clouds and/or patchy geochemical alteration halos) on the 3D reservoir response. We found that small-scale, shallow heterogeneities cause distortions that are almost independent of the source frequency. These persist at all source-receiver offsets in the electric amplitude response in deep and shallow waters and phase response in shallow water. They decrease in magnitude with increasing offset in deepwater phase response. Large-scale near-surface heterogeneities distort the horizontal electric field response more significantly than the small-scale ones, but the near-surface response gets smaller in amplitude as the offset increases. The distortions in shallow water are much smaller in magnitude than those for the deepwater case, so that the reservoir signatures still are visible on the response profiles. This might be considered as a positive feature for shallow-water inline electric field exploration. The magnetic field responses for the orthogonal direction provide diagnostic target signatures that are similar to the inline electric field responses in deep water but that are different in shallow water. The magnetic responses are affected by the airwave in a different manner from the electric field, suggesting that combined 3D electric and magnetic field analysis might be vital for handling the airwave problem.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3