APPARENT ATTENUATION DUE TO INTRABED MULTIPLES, II

Author:

Schoenberger M.1,Levin F. K.1

Affiliation:

1. Exxon Production Research Co., P.O. Box 2189, Houston, TX 77001

Abstract

In a paper with the same title published in Geophysics (June 1974), we showed that synthetic seismograms from two wells gave a frequency‐dependent attenuation due to intrabed multiples of about 0.06 dB/wavelength. This loss was 1/3 to 1/2 of the total attenuation found for field data on lines near the wells. Our data sufficed to confirm the conclusion of O’Doherty and Anstey that attenuation caused by intrabed multiples may be appreciable, but the number of wells was insufficient to establish the magnitude of that attenuation in general. To get a better feel for intrabed multiple‐generated attenuation, we have computed losses for 31 additional wells from basins all over the world. Sonic and, where available, density logs were digitized every foot and converted into synthetic seismograms with 50 orders of intrabed multiples. Using the technique of the 1974 paper of extending the logs and placing an isolated reflector 2000 ft below the bottom of the wells, we computed attenuation constants for plane seismic waves that had traveled down and back through the subsurfaces defined by the logs. Computed constants varied from 0.01 dB/wavelength to 0.22 dB/wavelength. Total traveltimes ranged from 0.7 to 2.7 sec; the average was 1.9 sec. Attenuation constants computed from surface seismic data near four of the 31 wells gave values 1.3 to 7 times the corresponding intrabed constants. Thus, attenuation due to intrabed multiples accounts for an appreciable fraction of the observed attenuation but by no means all of it.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Study of Seismic Wave Attenuation in Carbonate Rocks;SPE Journal;2024-01-01

2. Seismic Attenuation Extraction From Traffic Signals Recorded by a Single Seismic Station;Geophysical Research Letters;2023-02-06

3. Seismic attenuation extracted from isolated traffic signals;Second International Meeting for Applied Geoscience & Energy;2022-08-15

4. Using the Q factor to detect closed microfractures;GEOPHYSICS;2020-09-01

5. References;Introduction to Petroleum Seismology;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3