THE ELECTROCHEMICAL MECHANISM OF SULFIDE SELF‐POTENTIALS

Author:

Sato Motoaki1,Mooney Harold M.2

Affiliation:

1. Department of Geology, Harvard University, Cambridge, Massachusetts

2. Department of Geophysics, School of Mines and Metallurgy, University of Minnesota, Minneapolis, Minnesota

Abstract

Self‐potentials associated with a sulfide ore body result from the ohmic potential drop within the country rocks. The electric current is produced by separate but simultaneous reduction of oxidizing agents near the surface and oxidation of reducing agents at depth. The ore does not participate directly in either reaction, but serves as a conductor to transfer the electrons from the reducing agents to the oxidizing agents. The possibility for the above reactions to occur depends upon differences in oxidation potential of ground waters at different depths. In the zone of weathering, the oxidation potential is controlled by the reduction mechanism of oxygen, and ranges in value from 0.2 to 0.7 volt (on the hydrogen scale). If the ore tends to oxidize at some lower potential, then the latter is the available one. In the zone beneath the water table, the potential is probably controlled by the oxidation‐reduction equilibria of iron‐rich minerals, and ranges in value from 0 to −0.3 volt. The available potential is independent of ore type. The maximum potential difference available to produce natural currents is estimated at: graphite 0.8, pyrite 0.7, covellite 0.6, chalcocite 0.5, galena 0.3 volt. Self‐potentials will be large if the ore body (1) is composed of minerals difficult to oxidize, (2) has low electrical resistance (physical continuity together with low resistivity), (3) extends vertically across the water table, and (4) exists close to the surface.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3