Brittleness evaluation of resource plays by integrating petrophysical and seismic data analysis

Author:

Zhang Bo1,Zhao Tao1,Jin Xiaochun2,Marfurt Kurt J.1

Affiliation:

1. The University of Oklahoma, ConocoPhillips School of Geology and Geophysics, Norman, Oklahoma, USA..

2. The University of Oklahoma, the Mewbourne School of Petroleum and Geological Engineering, Norman, Oklahoma, USA..

Abstract

The main considerations for well planning and hydraulic fracturing in unconventional resources plays include the amount of total organic carbon and how much hydrocarbon can be extracted. Brittleness is the direct measurement of a formation about the ability to create avenues for hydrocarbons when applying hydraulic fracturing. Brittleness can be directly estimated from laboratory stress-strain measurements, rock-elastic properties, and mineral content analysis using petrophysical analysis on well logs. However, the estimated brittleness using these methods only provides “cylinder” estimates near the borehole. We proposed a workflow to estimate brittleness of resource plays in 3D by integrating the petrophysics and seismic data analysis. The workflow began by brittleness evaluation using mineral well logs at the borehole location. Then, we used a proximal support vector machine algorithm to construct a classification pattern between rock-elastic properties and brittleness for the selected benchmark well. The pattern was validated using well-log data that were not used for constructing the classification. Next, we prestack inverted the fidelity preserved seismic gathers to generate a suite of rock-elastic properties volumes. Finally, we obtained a satisfactory brittleness index of target formations by applying the trained classification pattern to the inverted rock-elastic-property volumes.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3