Climate, duration, and mineralogy controls on meteoric diagenesis, La Molata, southeast Spain

Author:

Li Zhaoqi1,Goldstein Robert H.2,Franseen Evan K.2

Affiliation:

1. Formerly The University of Kansas, Department of Geology, Kansas, USA; presently ConocoPhillips, Ashford, Texas, USA..

2. The University of Kansas, Department of Geology, Kansas, USA..

Abstract

We isolated the impact of climate, duration, and mineralogy on porosity enhancement and cementation associated with seven surfaces of subaerial exposure in Miocene carbonate strata of southeast Spain. We integrated new and published petrographic and geochemical studies on the same strata to quantify the approximate impact of each event of subaerial exposure. The results quantified that only minor dissolution and/or cementation occurred when subaerial exposure was short-lived ([Formula: see text] thousand years) and in an arid climate, or when carbonate sediments were composed primarily of calcite. For such exposure surfaces, alteration was confined to the uppermost 0.5–2 m with 2%–5% porosity from dissolution and 3% cementation. After deposition of the last Miocene carbonate sequence, dolomitization and dissolution occurred during the initial stages of sea-level fall, associated with mixing during influx of meteoric water. This resulted in dissolution to create 10%–20% porosity over 83% of the platform system, and this indicated that even incipient subaerial exposure can lead to major porosity enhancement during times of high freshwater recharge and hydrogeology that promotes mixing. During a long-lived period of subaerial exposure (greater than 5.3 million years) associated with wet climate, major amounts of cementation reduced porosity in the phreatic zone and some porosity was enhanced in the vadose zone. This included 25% freshwater calcite cement affecting 53% of the platform. Dissolution during and after calcite cementation was approximately 8% throughout the platform. These observations predict that duration and climate combine to have the most significant impacts on porosity associated with subaerial exposure.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3