3D printing sandstone porosity models

Author:

Ishutov Sergey1,Hasiuk Franciszek J.1,Harding Chris1,Gray Joseph N.2

Affiliation:

1. Iowa State University, Department of Geological and Atmospheric Sciences, Ames, Iowa, USA..

2. Iowa State University, Center for Nondestructive Evaluation, Ames, Iowa, USA..

Abstract

The petroleum industry requires new technologies to improve the economics of exploration and production. Digital rock physics is a methodology that seeks to revolutionize reservoir characterization, an essential step in reservoir assessment, using computational methods. A combination of X-ray computed microtomography, digital pore network modeling, and 3D printing technology represents a novel workflow for transferring digital rock models into tangible samples that can be manufactured in a variety of materials and tested with standard laboratory equipment. Accurate replication of pore networks depends on the resolution of tomographic images, rock sample size, statistical algorithms for digital modeling, and the resolution of 3D printing. We performed this integrated approach on a sample of Idaho Gray Sandstone with an estimated porosity of 29% and permeability of 2200 mD. Tomographic images were collected at resolutions of 30 and [Formula: see text] per voxel. This allowed the creation of digital porosity models segmented into grains and pores. Surfaces separating pores from grains were extracted from the digital rock volume and 3D printed in plastic as upscaled tangible models. Two model types, normal (with pores as voids) and inverse (with pores as solid), allowed visualization of the geometry of the grain matrix and topology of pores, while allowing characterization of pore connectivity. The current resolution of commodity 3D printers with a plastic filament ([Formula: see text] for pore space and [Formula: see text] for grain matrix) is too low to precisely reproduce the Idaho Gray Sandstone at its original scale. However, the workflow described here also applies to advanced high-resolution 3D printers, which have been becoming more affordable with time. In summary, with its scale flexibility and fast manufacturing time, 3D printing has the potential to become a powerful tool for reservoir characterization.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference15 articles.

1. Pore-scale imaging and modelling

2. Grandin, R. J., 2014, Early-state damage detection, characterization, and evolution using high-resolution computed tomography: Ph.D. dissertation, Iowa State University.

3. Borehole breakouts and compaction bands in two high-porosity sandstones

4. Making things geological: 3-D printing in the geosciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3