Seismic geologic structure characterization using a high-order spectrum-coherence attribute

Author:

Liu Naihao1ORCID,Li Zhen1,Sun Fengyuan2,Li Fangyu3ORCID,Gao Jinghuai1ORCID

Affiliation:

1. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an 710049, China and National Engineering Laboratory for Offshore Oil Exploration, Xi’an 710049, China..

2. Guilin University of Electronic Technology, School of Information and Communication, Guilin 541004, China..

3. University of Georgia, College of Engineering, Athens, Georgia 30602, USA.(corresponding author).

Abstract

Characterization of seismic geologic structures, such as describing fluvial channels and geologic faults, is significant for seismic reservoir prediction. The coherence algorithm is one of the widely used techniques for describing discontinuous seismic geologic structures. However, precise coherence attributes between adjacent seismic traces are difficult to compute due to the nonstationary and non-Gaussian property of seismic data. To describe seismic geologic structures accurately, we define a high-order spectrum-coherence (HOSC) attribute. First, we have developed a time-frequency (TF) analysis method to compute a constant-frequency seismic volume with high TF resolution, i.e., the second-order synchrosqueezing wave packet transform. Then, we developed a coherence approach by combining the mutual information (MI) calculation and coherence algorithm based on the eigenvalue computation (C3). To improve computational efficiency, we adopt the information divergence instead of the eigenvalue calculation of the C3-based algorithms. By applying our coherence algorithm to constant-frequency seismic volumes, we obtain the HOSC attribute. To test the validity of the proposed workflow, we evaluate the HOSC attribute using synthetic data. After applying our workflow to 3D real seismic data located in eastern China, the HOSC attribute characterizes seismic geologic discontinuities and subtle features clearly and accurately, such as fluvial channels and subtle faults.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

National Science Technology Major Project

National Key R&D Program of the Ministry of Science and Technology of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3