Fault-related overpressure in the Krishna-Godavari Basin, India

Author:

G. Karthikeyan1ORCID,Dutta Jayanta1ORCID,Kumar Ashutosh1,Bhardwaj Nitin1,Sinha Neeraj1

Affiliation:

1. Reliance Industries Limited, Maharashtra 400701, India..

Abstract

Drilling and reaching to deeper target zones through an overpressured overburden formation in a structurally complex geologic setting requires robust geologic and geomechanical analysis to mitigate risk and control operational costs. These types of geologic conditions are present in the Krishna-Godavari Basin, where a series of horst and grabens defined by deep-seated faults and persistent high sedimentation rates through geologic time, result in the development of challenging conditions for exploratory drilling. We have developed possible overpressure mechanisms across the central part of the Krishna-Godavari Basin and its interplay through fault-related lateral pressure transfer. The basin sits over a horst, which is one of the many northeast–southwest-trending en echelon horst and graben structures comprising sediments from the lower Cretaceous to Holocene. In the study area, Paleocene formations in the horst are overpressured (12–12.2 ppg). Three wells were drilled through this formation and reached the target without any drilling issues in the central and eastern part. However, the same formation in the western part of the horst (adjacent to the graben) has higher overpressure of approximately 14 ppg, which complicates the drilling operations because it requires an additional intermediate casing to reach the target reservoir safely. A detailed analysis of the overpressure mechanisms across the horst area to the adjacent deep graben revealed that the disequilibrium compaction signatures are related to the burial history and overburden thickness. The major difference between horst and graben area is the magnitude of overpressure, with an average of 16 ppg across the graben area. The larger overpressures experienced toward the western part of the horst indicate a secondary source of pressure from the adjacent deep graben. The fault stress analysis in this region presents a feasible lateral pressure transfer through critically stressed faults/fractures from the deep graben to the western part of the horst structure. The current model accounts the common pore pressure estimation method along with other critical geologic information to predict such overpressure related challenges in the upcoming future wells in a similar geologic setup to plan safe and cost-effective wells.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3