Estimation of microfracture porosity in deep carbonate reservoirs based on 3D rock-physics templates

Author:

Pang Mengqiang1,Ba Jing1ORCID,Fu Li-Yun2ORCID,Carcione José M.3,Markus Uti I.1,Zhang Lin1

Affiliation:

1. Hohai University, School of Earth Sciences and Engineering, Nanjing 211100, China.(corresponding author); .

2. China University of Petroleum (East China), Key Laboratory of Deep Oil and Gas, 66 Changjiang West Road, Huangdao District, Qingdao 266580, Shandong, China..

3. Hohai University, School of Earth Sciences and Engineering, Nanjing 211100, China; and Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante 42c, Sgonico, Trieste 34010, Italy..

Abstract

Carbonate reservoirs in the S area of the Tarim Basin (China) are ultradeep hydrocarbon resources, with low porosity, complex fracture systems, and dissolved pores. Microfracturing is a key factor of reservoir connectivity and storage space. We have performed measurements on limestone samples, under different confining pressures, and we used the self-consistent approximation model and the Biot-Rayleigh theory of double porosity to study the microfractures. We have computed the fluid properties (mainly oil) as a function of temperature and pressure. Using the dependence of seismic [Formula: see text] on the microfractures, a multiscale 3D rock-physics template (RPT) is built, based on the attenuation, P-wave impedance, and phase velocity ratio. We estimate the ultrasonic and seismic attenuation with the spectral-ratio method and the improved frequency-shift method, respectively. Then, calibration of the RPTs is performed at ultrasonic and seismic frequencies. We use the RPTs to estimate the total and microfracture porosities. The results indicate that the total porosity is low and the microfracture porosity is relatively high, which is consistent with the well log data and actual oil production reports. This work presents a method for identification of deep carbonate reservoirs by using the microfracture porosity estimated from the 3D RPT, which could be exploited in oil and gas exploration.

Funder

National Natural Science Foundation of China

Specially-Appointed Professor Plan of Jiangsu Province

Jiangsu Innovation and Entrepreneurship Plan

Chinese Academy of Sciences

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3