Sedimentary characteristics and genetic mechanisms of high-quality reservoirs in a mixed siliciclastic-carbonate system in the Qinhuangdao area, Bohai Sea, China

Author:

Xue Yongan1,Niu Chengmin1,Xu Wei1ORCID,Pang Xiaojun1ORCID,Zhang Li1

Affiliation:

1. China National Offshore Oil Corporation, Tianjin Branch, Tianjin 300459, China.(corresponding author); .

Abstract

Mixed siliciclastic-carbonate sediments occur broadly in modern and ancient systems. Studies on mixing processes began in shallow shelf environments; however, the genetic model of marine mixed sediments is difficult to apply to continental rift basins due to the complex palaeogeographic environment. We identified three mixing types in the first and second members of the Palaeogene Shahejie Formation (E2s1–2) in the Qinhuangdao area of the Bohai Sea: (1) mixed fan delta, (2) retrogradation mixed sheet, and (3) mixed sheet without siliciclastic influx. Tectonic stability, arid climate, and saline lakes are prerequisite conditions for the development of mixed sediments, whereas the palaeogeomorphologic unit should be the critical factor. We also concluded that the primary sedimentary material contains near-source coarse terrestrial debris, and the advantageous lithologic facies producing biological components are the foundation for high-quality mixed reservoirs, which are characterized by thick layers and favorable porosities and permeabilities. The micritic coatings and early dolomitization against the background of a saline lake environment favored the preservation of primary pores, whereas the leaching by atmospheric water and organic acid erosion during thermal evolution of the source rock created many secondary pores. In addition, hydrocarbon charging protected the reservoir space from carbonate cementation.

Funder

National Science and Technology Major Projects of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3