Kriging interpolation in seismic attribute space applied to the South Arne Field, North Sea

Author:

Hansen T. M.123,Mosegaard K.123,Schiøtt C. R.123

Affiliation:

1. Formerly at Niels Bohr Institute, Copenhagen, Denmark; presently at DTU Informatics, Technical University of Denmark, Richard Petersens Plads, Bygning 321, 2800 Lyngby, Denmark. , .

2. Technical University of Denmark, DTU Informatics, Technical University of Denmark, Richard Petersens Plads, Bygning 321, 2800 Lyngby, Denmark. .

3. Hess, Copenhagen, Denmark. .

Abstract

Seismic attributes can be used to guide interpolation in-between and extrapolation away from well log locations using for example linear regression, neural networks, and kriging. Kriging-based estimation methods (and most other types of interpolation/extrapolation techniques) are intimately linked to distances in physical space: If two observations are located close to one another, the implicit assumption is that they are highly correlated. This may, however, not be a correct assumption as the two locations can be situated in very different geological settings. An alternative approach to the traditional kriging implementation is suggested that frees the interpolation from the restriction of the physical space. The method is a fundamentally different application of the original kriging formulation where a model of spatialvariability is replaced by a model of variability in an attribute space. To the extent that subsurface geology can be described by a set of seismic attributes, we present an automated multivariate kriging-based interpolation method that is guided by geological similarity rather than by the conventional distance measure in XYZ space. Through a case study, kriging in attribute space is used to estimate 2D porosity maps from a number of well logs and seismic attributes in the Danish North Sea. Cokriging provides uncertainty estimates that are dependent on the primary data locations in space, whereas kriging in attribute space provides uncertainty estimates that reflect subsurface geological variability. The North Sea case study demonstrates that kriging in attribute space performs better than linear regression and cokriging.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3