Splines in geophysics

Author:

Gonzalez‐Casanova Pedro1,Alvarez Roman2

Affiliation:

1. Instituto de Geofisica, Universidad National Autonoma de Mexico, 04510 Mexico, D. F., Mexico

2. Instituto de Investigaciones, en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, 01000 Mexico, D. F., Mexico

Abstract

Modeling and contouring of geophysical data often require distributions of regularly spaced values. Splines have been shown to be the most accurate methods to obtain such distributions. We emphasize the general problem of interpolating random distributions of data on a given surface. Splines are classified into unidimensional, quasi‐bidimensional, and strictly bidimensional; based on this classification, a systematic derivation of the corresponding interpolating techniques is conducted. Two approaches are presented to obtain unidimensional splines: one based on the continuity of the first and second derivatives of the polynomials involved, and the other based on a variational approach. Quasi‐bidimensional splines are constructed based on the unidimensional approach, while strictly bidimensional splines are generated by minimizing the bidimensional curvature. Quasi‐bidimensional splines can be used for processing data distributions along nearly parallel lines; linear projections and parameterization are the techniques used in interpolating this type of distribution. Strictly bidimensional splines minimize curvature through the analytic solution of the Euler‐Lagrange equation or by a finite‐difference algorithm. The maximum error, mean error, and standard deviation between interpolated data and exact field values produced by various prisms show that quasi‐bidimensional splines are 2.7 percent more accurate in the maximum error than strictly bidimensional splines when both techniques are applied to regularly spaced data. However, for irregularly spaced data, three examples containing 300, 600, and 900 random data points show the superiority of the thin‐plate approach over the quasi‐bidimensional splines. A comparison between various interpolation densities on regular grids, starting from a set of 327 randomly distributed magnetic stations, illustrates some differences between geophysically meaningful interpolations and interpolations carried out only for contouring purposes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3