2.5D crosshole GPR full-waveform inversion with synthetic and measured data

Author:

Mozaffari Amirpasha1ORCID,Klotzsche Anja1ORCID,Warren Craig2,He Guowei1,Giannopoulos Antonios3,Vereecken Harry1,van der Kruk Jan1ORCID

Affiliation:

1. Agrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Germany and Centre for High-Performance Scientific Computing in Terrestrial Systems (TerrSys), Geoverbund ABC/Jülich, Germany.(corresponding author); .

2. Northumbria University, Department of Mechanical and Construction Engineering, Newcastle upon Tyne, United Kingdom..

3. The University of Edinburgh, Institute for Infrastructure and Environment, School of Engineering, Edinburgh, United Kingdom..

Abstract

Full-waveform inversion (FWI) of cross-borehole ground-penetrating radar (GPR) data is a technique with the potential to investigate subsurface structures. Typical FWI applications transform 3D measurements into a 2D domain via an asymptotic 3D to 2D data transformation, widely known as a Bleistein filter. Despite the broad use of such a transformation, it requires some assumptions that make it prone to errors. Although the existence of the errors is known, previous studies have failed to quantify the inaccuracies introduced on permittivity and electrical conductivity estimation. Based on a comparison of 3D and 2D modeling, errors could reach up to 30% of the original amplitudes in layered structures with high-contrast zones. These inaccuracies can significantly affect the performance of crosshole GPR FWI in estimating permittivity and especially electrical conductivity. We have addressed these potential inaccuracies by introducing a novel 2.5D crosshole GPR FWI that uses a 3D finite-difference time-domain forward solver (gprMax3D). This allows us to model GPR data in 3D, whereas carrying out FWI in the 2D plane. Synthetic results showed that 2.5D crosshole GPR FWI outperformed 2D FWI by achieving higher resolution and lower average errors for permittivity and conductivity models. The average model errors in the whole domain were reduced by approximately 2% for permittivity and conductivity, whereas zone-specific errors in high-contrast layers were reduced by approximately 20%. We verified our approach using crosshole 2.5D FWI measured data, and the results showed good agreement with previous 2D FWI results and geologic studies. Moreover, we analyzed various approaches and found an adequate trade-off between computational complexity and accuracy of the results, i.e., reducing the computational effort while maintaining the superior performance of our 2.5D FWI scheme.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3