Extrapolated full-waveform inversion with deep learning

Author:

Sun Hongyu1ORCID,Demanet Laurent1

Affiliation:

1. Massachusetts Institute of Technology, Earth Resources Laboratory, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA.(corresponding author); .

Abstract

The lack of low-frequency information and a good initial model can seriously affect the success of full-waveform inversion (FWI), due to the inherent cycle skipping problem. Computational low-frequency extrapolation is in principle the most direct way to address this issue. By considering bandwidth extension as a regression problem in machine learning, we have adopted an architecture of convolutional neural network (CNN) to automatically extrapolate the missing low frequencies. The band-limited recordings are the inputs of the CNN, and, in our numerical experiments, a neural network trained from enough samples can predict a reasonable approximation to the seismograms in the unobserved low-frequency band, in phase and in amplitude. The numerical experiments considered are set up on simulated P-wave data. In extrapolated FWI (EFWI), the low-wavenumber components of the model are determined from the extrapolated low frequencies, before proceeding with a frequency sweep of the band-limited data. The introduced deep-learning method of low-frequency extrapolation shows adequate generalizability for the initialization step of EFWI. Numerical examples show that the neural network trained on several submodels of the Marmousi model is able to predict the low frequencies for the BP 2004 benchmark model. Additionally, the neural network can robustly process seismic data with uncertainties due to the existence of random noise, a poorly known source wavelet, and a different finite-difference scheme in the forward modeling operator. Finally, this approach is not subject to strong assumptions on signals or velocity models of other methods for bandwidth extension and seems to offer a tantalizing solution to the problem of properly initializing FWI.

Funder

Total

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference46 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems (Software available from tensorflow.org).

2. Automated fault detection without seismic processing

3. Deep-learning tomography

4. Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP velocity benchmark: 67th Annual International Conference and Exhibition, EAGE, Extended Abstracts, B035.

5. Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The intelligent inversion with model reparameterization of borehole and surface gravity data;International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications, Shenzhen, China, May 19–22, 2024;2024-08-23

2. Analysis on stable imaging and inverse algorithm for artificial source EM data;Journal of Geophysics and Engineering;2024-07-03

3. SeisResoDiff: Seismic resolution enhancement based on a diffusion model;Petroleum Science;2024-07

4. Signal Reconstruction of Arbitrarily Lack of Frequency Bands from Seismic Wavefields Based on Deep Learning;Applied Sciences;2024-06-06

5. Deep Learning With Physics-Embedded Neural Network for Full Waveform Ultrasonic Brain Imaging;IEEE Transactions on Medical Imaging;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3