Estimating dry rock frame moduli of high-resolution 3D digital rock images using the contact-mechanics-based effective medium approach

Author:

Kerimov Abdulla1ORCID,Cook Jennie1,Lane Nathan1,Lakshtanov Dmitry2,Gettemy Glen1

Affiliation:

1. BP America Inc, Houston, Texas, USA.(corresponding author); .

2. BP, Sunbury, UK..

Abstract

We have developed a method to estimate the dry frame elastic moduli of high-resolution 3D digital rock images using the contact-mechanics-based effective medium theory (EMT) model. The existing EMT models often are used to predict the effective dry frame elastic moduli of granular aggregates as a function of porosity, average number of contacts per grain, grain radius, contact radius, and contact stiffnesses of an elastic two-grain combination. But, it is almost impossible to measure the number of contacts per grain, contact radius distribution, or contact stiffness distribution in complex rocks. Therefore, explicit assumptions based on simplified microstructural geometries often are made to predict these contact properties in granular aggregates. As a result, the predictions of dry frame elastic moduli using EMT models may fail to match the observed properties because of numerous simplified assumptions, which can be violated in complex rocks. Our method uses the morphological contact properties (i.e., the grain-to-grain contact radius distribution, grain radius distribution, and coordination number distribution) directly extracted from 3D digital rock images to improve the prediction accuracy of dry frame elastic moduli using the EMT models. With integration of digital rocks technology, there is no longer a need to assume the size and shape of the grains, contact size, and number of contacts. The prediction accuracy of our method is validated on high-resolution 3D micro-CT digital rock images of miniplugs extracted from plugs with ultrasonic velocity measurements under dry conditions at different confining pressures. Image-computed dry frame elastic moduli using the EMT model are consistent with laboratory-measured moduli extrapolated to ambient conditions.

Funder

BP America Inc

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3