A theory-guided deep-learning formulation and optimization of seismic waveform inversion

Author:

Sun Jian1ORCID,Niu Zhan2,Innanen Kristopher A.2ORCID,Li Junxiao3ORCID,Trad Daniel O.2ORCID

Affiliation:

1. University of Calgary, CREWES Project, Department of Geoscience, Calgary, Alberta, Canada andPennsylvania State University, College of Earth and Mineral Science, University Park, Pennsylvania, USA.(corresponding author).

2. University of Calgary, CREWES Project, Department of Geoscience, Calgary, Alberta, Canada..

3. PETRONAS Research Sdn Bhd, Exploration Technology, Group Research and Technology, Malaysia..

Abstract

Deep-learning techniques appear to be poised to play very important roles in our processing flows for inversion and interpretation of seismic data. The most successful seismic applications of these complex pattern-identifying networks will, presumably, be those that also leverage the deterministic physical models on which we normally base our seismic interpretations. If this is true, algorithms belonging to theory-guided data science, whose aim is roughly this, will have particular applicability in our field. We have developed a theory-designed recurrent neural network (RNN) that allows single- and multidimensional scalar acoustic seismic forward-modeling problems to be set up in terms of its forward propagation. We find that training such a network and updating its weights using measured seismic data then amounts to a solution of the seismic inverse problem and is equivalent to gradient-based seismic full-waveform inversion (FWI). By refining these RNNs in terms of optimization method and learning rate, comparisons are made between standard deep-learning optimization and nonlinear conjugate gradient and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimized algorithms. Our numerical analysis indicates that adaptive moment (or Adam) optimization with a learning rate set to match the magnitudes of standard FWI updates appears to produce the most stable and well-behaved waveform inversion results, which is reconfirmed by a multidimensional 2D Marmousi experiment. Future waveform RNNs, with additional degrees of freedom, may allow optimal wave propagation rules to be solved for at the same time as medium properties, reducing modeling errors.

Funder

Natural Science and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference74 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems, tensorflow.org.

2. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers

3. The Convergence of a Class of Double-rank Minimization Algorithms

4. A Limited Memory Algorithm for Bound Constrained Optimization

5. Seismic modeling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3