Removal of multisource noise in airborne electromagnetic data based on deep learning

Author:

Wu Xin1ORCID,Xue Guoqiang1ORCID,He Yiming1,Xue Junjie2

Affiliation:

1. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Mineral Resources, Beijing 100029, China, University of Chinese Academy of Sciences, Beijing 100049, China and Chinese Academy of Sciences, Innovation Academy for Earth Science, Beijing 100029, China.(corresponding author); .

2. China University of Mining and Technology, College of Geoscience and Surveying Engineering, Beijing 100083, China..

Abstract

Existing noise removal processes for airborne electromagnetic (AEM) data generally consist of several steps, with each using a specific method to remove a specific type of noise. To improve the efficiency of AEM denoising and reduce the impact of the subjective judgment of the operators on the processing results, we have adopted a deep learning method based on a denoising autoencoder (DAE), which enables in one single processing step the removal of multisource noise. The most common noise sources in AEM data, including motion-induced noise, nearby or moderately distant sferics noise, power-line noise, and background electromagnetic noise, will be combined with a large number of simulation responses to build a training set. The data in the training set will be used to train the deep learning DAE neural network so that the neural network could fully learn the respective characteristics of the signal and noise and further effectively distinguish the AEM response signal (useful signal) from the above noise. The field data were processed using this method, and the processing results were compared with those obtained using traditional methods. The comparison test revealed that this method is helpful to reduce the influence of subjective factors on the quality of data results and compress the entire AEM data processing time.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3