An adaptive node-distribution method for radial-basis-function finite-difference modeling with optimal shape parameter

Author:

Duan Peiran1,Gu Bingluo1ORCID,Li Zhenchun1ORCID,Ren Zhiming2ORCID,Li Qingyang1

Affiliation:

1. China University of Petroleum, School of Geoscience, Qingdao 266580, China.(corresponding author); .

2. Chang’an University, Xi’an 710064, China..

Abstract

The radial-basis-function finite-difference (RBF-FD) method has been proven successful in modeling seismic-wave propagation. Node distribution is typically the first and most critical step in RBF-FD. Regarding the difficulties in seismic modeling, such as node distribution of complex geologic structures, we have designed an adaptive node-distribution method that can generate nodes automatically and flexibly as the computation proceeds with the adaptive grain-radius satisfied dispersion relation and stability condition of seismic-wave propagation. Our method consists of two novel points. The first one is that we adopt an adaptive grain-radius generation method, which can automatically provide a wider scope of grain radius in seismic modeling while satisfying the dispersion relation and stability condition; the second one is that the node-generation algorithm is built by a smoothed model, which significantly improves the modeling stability at a reduced computational cost. Excessive or undesirable shape parameters will create a very ill-conditioned problem. A set of optimal shape parameters for different numbers of neighbor nodes is found quantitatively by minimizing root-mean-square error functions. This optimization method enables us to achieve an improved meshfree modeling process with higher accuracy and practicability and fewer spurious diffractions caused by the transition of different sampling areas. Several numerical results verify the feasibility of our adaptive node-distribution method and the optimal shape parameters.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3