The asymptotic local finite-difference method of the fractional wave equation and its viscous seismic wavefield simulation

Author:

Song Guojie1ORCID,Zhang Xinmin1ORCID,Wang Zhiliang1,Chen Yali1,Chen Puchun1

Affiliation:

1. Southwest Petroleum University, School of Sciences, Chengdu 610500, China.(corresponding author); .

Abstract

Viscous seismic wave propagation simulation using the fractional order equation has attracted much recent attention. However, conventional finite-difference (FD) methods of the fractional partial difference equation adopt a global difference operator to approximate the fractional derivatives, which reduces the computational efficiency dramatically. To improve the efficiency of the FD method, we have developed a reasonable truncated stencil pattern by strict mathematical derivation and adopted an asymptotic local FD (ALFD) method. Theoretical analysis and numerical results indicate that the ALFD method is accurate and efficient. In fact, our numerical results illustrate that the numerical solution solved by the ALFD method has a maximum relative error not exceeding 0.014% compared to the reference solution (applied to a finely meshed computational domain). The computation speed of ALFD is also significantly faster than that of the original FD method. The computational time of the three ALFD methods satisfying a different preset accuracy is only approximately 2.71%, 1.26%, and 0.78% of that of the original fractional wave equation FD method. The ALFD method provides a useful tool for viscoelastic seismic wavefield propagation simulation.

Funder

Young Technology Innovation Team of Southwest Petroleum University

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3