Self-training and learning the waveform features of microseismic data using an adaptive dictionary

Author:

Wang Hang1,Zhang Quan1,Zhang Guoyin2ORCID,Fang Jinwei2ORCID,Chen Yangkang1ORCID

Affiliation:

1. Zhejiang University, School of Earth Sciences, Hangzhou 310027, China.(corresponding author).

2. China University of Petroleum, State Key Laboratory of Petroleum Resources and Prospecting, Fuxue Road 18th, Beijing 102200, China..

Abstract

Microseismic monitoring is an indispensable technique in characterizing the physical processes that are caused by extraction or injection of fluids during the hydraulic fracturing process. Microseismic data, however, are often contaminated with strong random noise and have a low signal-to-noise ratio (S/N). The low S/N in most microseismic data severely affects the accuracy and reliability of the source localization and source-mechanism inversion results. We have developed a new denoising framework to enhance the quality of microseismic data. We use the method of adaptive sparse dictionaries to learn the waveform features of the microseismic data by iteratively updating the dictionary atoms and sparse coefficients in an unsupervised way. Unlike most existing dictionary learning applications in the seismic community, we learn the features from 1D microseismic data, thereby to learn 1D features of the waveforms. We develop a sparse dictionary learning framework and then prepare the training patches and implement the algorithm to obtain favorable denoising performance. We use extensive numerical examples and real microseismic data examples to demonstrate the validity of our method. Results show that the features of microseismic waveforms can be learned to distinguish signal patches and noise patches even from a single channel of microseismic data. However, more training data can make the learned features smoother and better at representing useful signal components.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3