Discontinuous Galerkin modeling of 3D arbitrary anisotropic Q

Author:

Zhan Qiwei1,Zhuang Mingwei2,Fang Yuan3,Huo Liu Qing3ORCID

Affiliation:

1. University of Texas at Austin, Oden Institute for Computational Engineering and Sciences, Austin, Texas 78712, USA and Duke University, Department of Electrical and Computer Engineering, Durham, North Carolina 27708, USA..

2. Xiamen University, Institute of Electromagnetics and Acoustics, Xiamen 361005, China..

3. Duke University, Department of Electrical and Computer Engineering , Durham, North Carolina 27708, USA.(corresponding author).

Abstract

For wave propagation problems, conventional time-domain anelastic attenuation modeling involves either Caputo fractional time derivatives for an exactly constant-[Formula: see text] model, thus leading to globally temporal memory effects; or auxiliary partial differential equations (PDEs) for a nearly constant-[Formula: see text] model, thus resulting in globally spatial operators. Therefore, memory and time consumptions increase tremendously, compared with the purely elastic counterpart. Moreover, the numerical models are usually limited to isotropic or transversely isotropic attenuation, due to the ambiguity of anisotropic attenuation parameterization. Therefore, it is indispensable to investigate an efficient method, to easily incorporate the general anisotropic attenuation effects in the time domain. To tackle these problems, we have first developed a [Formula: see text]-transformation rule, via the correspondence principle, revealing the validity range for a large enough [Formula: see text] value. Then, we construct a new constitutive equation, by extending the generalized Maxwell body, from the isotropic viscoelastic media to fully anisotropic scenario, i.e., as complex as triclinic attenuation. As a result, global memory effects are effectively localized, with several anelastic functions subject to ordinary differential equations, while preserving the original governing equations. An efficient hp-adaptive discontinuous Galerkin (DG) time-domain algorithm is implemented, where the Riemann problem is exactly solved. Consequently, the extra computation cost to incorporate [Formula: see text] effects is nearly negligible. Furthermore, we derive an analytical solution for the general anisotropic attenuation to verify this DG implementation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference49 articles.

1. Attenuation models of the earth

2. Time-domain finite-difference modeling for attenuative anisotropic media

3. Blanc, E., 2013, Time-domain numerical modeling of poroelastic waves: The Biot-JKD model with fractional derivatives: Ph.D. thesis, Aix-Marseille Université.

4. A generalization of the Fourier pseudospectral method

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3