Deep-learning seismic full-waveform inversion for realistic structural models

Author:

Liu Bin1ORCID,Yang Senlin2,Ren Yuxiao2ORCID,Xu Xinji3,Jiang Peng2ORCID,Chen Yangkang4ORCID

Affiliation:

1. Shandong University, School of Qilu Transportation, Jinan, Shandong Province 250061, China, Shandong University, Geotechnical and Structural Engineering Research Center, Jinan, Shandong Province 250061, China, and Shandong University, Data Science Institute, Jinan, Shandong Province 250061, China..

2. Shandong University, School of Qilu Transportation, Jinan, Shandong Province 250061, China.(corresponding author).

3. Shandong University, Geotechnical and Structural Engineering Research Center, Jinan, Shandong Province, 250061, China..

4. Zhejiang University, School of Earth Sciences, Hangzhou, Zhejiang Province 310027, China..

Abstract

Velocity model inversion is one of the most important tasks in seismic exploration. Full-waveform inversion (FWI) can obtain the highest resolution in traditional velocity inversion methods, but it heavily depends on initial models and is computationally expensive. In recent years, a large number of deep-learning (DL)-based velocity model inversion methods have been proposed. One critical component in those DL-based methods is a large training set containing different velocity models. We have developed a method to construct a realistic structural model for the DL network. Our compressional-wave velocity model building method for creating dense-layer/fault/salt body models can automatically construct a large number of models without much human effort, which is very meaningful for DL networks. Moreover, to improve the inversion result on these realistic structural models, instead of only using the common-shot gather, we also extract features from the common-receiver gather as well. Through a large number of realistic structural models, reasonable data acquisition methods, and appropriate network setups, a more generalized result can be obtained through our proposed inversion framework, which has been demonstrated to be effective on the independent testing data set. The results of dense-layer models, fault models, and salt body models that we compared and analyzed demonstrate the reliability of our method and also provide practical guidelines for choosing optimal inversion strategies in realistic situations.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3