Using an airborne electromagnetic method to map saltwater intrusion in the northern Salinas Valley, California

Author:

Gottschalk Ian1ORCID,Knight Rosemary1,Asch Theodore2,Abraham Jared2,Cannia James2

Affiliation:

1. Stanford University, Geophysics Department, 397 Panama Mall, 3rd Floor, Stanford, California 94305, USA.(corresponding author); .

2. Aqua Geo Frameworks LLC, 130360 County Road D, Mitchell, Nebraska 69357, USA..

Abstract

Saltwater intrusion can pose a serious threat to groundwater quality in coastal regions. Estimating the extent of saltwater intrusion is vital for groundwater managers to plan appropriate mitigation strategies. The airborne electromagnetic (AEM) method is commonly used to evaluate groundwater resources, but it is challenging to apply in coastal environments because the low resistivity of saltwater-saturated aquifers attenuates the electromagnetic signal quickly and the relationship between electrical resistivity and pore water salinity is complex. However, if successful, the AEM method can supply information to address questions of critical importance in coastal regions. We investigated the extent of, and controls on, saltwater intrusion using the AEM method in the northern Salinas Valley, CA, USA. We collected 635 line-km of AEM data in the study area, the inversion results of which produced estimates of the electrical resistivity of the subsurface, reaching depths of between 50 and approximately 200 m below the ground surface. We have developed a relationship between the AEM electrical resistivity model and groundwater salinity, calibrated from borehole geophysical and water quality measurements, which allowed us to generate images revealing the distribution of saltwater and fresher groundwater in the study area. This fresher groundwater (defined as “a source of drinking water”) was successfully mapped out in the unconfined aquifer (the Dune Sand Aquifer) and the uppermost confined aquifer (the 180-Foot Aquifer) in the study area, illustrating a groundwater recharge process that helps mitigate saltwater intrusion in the 180-Foot Aquifer. Deep, low-resistivity bodies also were mapped, indicating regions where saltwater likely is migrating vertically from the 180-Foot Aquifer into the lower confined aquifer (the 400-Foot Aquifer). The findings from this case study demonstrate the value of acquiring AEM data for investigating the distribution of salinity in coastal aquifers impacted by saltwater intrusion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3