Frequency-dependent P-wave anisotropy due to scattering in rocks with aligned fractures

Author:

Guo Junxin1ORCID,Gurevich Boris2ORCID,Shuai Da3

Affiliation:

1. Southern University of Science and Technology, Department of Earth and Space Sciences, Shenzhen 518055, China and University of Science and Technology of China, School of Earth and Space Sciences, Hefei 230026, China..

2. Curtin University, WA School of Mines: Minerals, Energy and Chemical Engineering, GPO Box U1987, Perth 6845, Australia and CSIRO, 26 Dick Perry Avenue, Kensington 6152, Australia..

3. China University of Petroleum (Beijing), State Key Laboratory of Petroleum Resources and Prospecting, CNPC Key Laboratory of Geophysical Exploration, Beijing 102249, China.(corresponding author).

Abstract

Frequency-dependent P-wave anisotropy due to scattering often occurs in fractured formations, whereas the corresponding theoretical study is lacking. Hence, based on a newly developed P-wave scattering model, we have studied the frequency-dependent P-wave scattering anisotropy in rocks with aligned fractures. To describe P-wave scattering anisotropy, we develop the corresponding anisotropy parameters similar to those for elastic anisotropy. Our results indicate that the P-wave velocity anisotropy parameters [Formula: see text] and [Formula: see text] do not change with frequency monotonically, which is different from that caused by wave-induced fluid flow. Fluid saturation in fractures can greatly decrease the P-wave velocity anisotropy, whose effects depend on the ratio of the fluid bulk modulus to the fracture aspect ratio. The P-wave exhibits elliptical anisotropy for the dry fracture case at low frequencies, but anelliptical anisotropy for the case with fluid-filled fractures. The P-wave attenuation anisotropy parameters [Formula: see text] and [Formula: see text] vanish in the low- and high-frequency limits but reach their maxima at the characteristic frequency when the P-wavelength is close to the fracture length. The influence of fluid on the P-wave attenuation anisotropy is similar to that on the velocity anisotropy. To further analyze frequency-dependent P-wave scattering anisotropy, theoretical predictions are compared with experimental results, which indicate reasonable agreement between them.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

SUSTech Presidential Postdoctoral Fellowship

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3