Frequency-dependent AVO analysis using the scattering response of a layered reservoir

Author:

Kumar Dhananjay1ORCID,Zhao Zeyu2ORCID,Foster Douglas J.2ORCID,Dralus Danica1,Sen Mrinal K.2ORCID

Affiliation:

1. BP America Inc., Upstream Technology, Houston, Texas 77079, USA..

2. University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Institute for Geophysics, Austin, Texas 78713, USA..

Abstract

Sensitivity of reservoir properties to broadband seismic amplitudes can be weak, which makes interpretation ambiguous. Examples of challenging interpretation scenarios include distinguishing blocky reservoirs from fining sequences, low gas saturation from high gas saturation, and variable reservoir quality. Some of these rock and fluid changes might indicate stronger sensitivity to amplitudes over narrow frequency bands, which is a characteristic of frequency-dependent amplitude variation with offset (FAVO). We have developed a FAVO model for reservoir characterization, following a seismic scattering phenomenon through a set of isotropic elastic layers. The frequency dependency in our model comes from the time delays due to wave propagation within layers. The FAVO modeled response is a complex-valued amplitude varying with angle and frequency, and it is a function of the seismic velocities and thicknesses of individual layers, along with the conventional AVO response at all interfaces. Our FAVO seismic analysis consists of two main steps: (1) forward modeling using well logs to understand rock and fluid sensitivity to amplitudes to identify tuning frequencies with maximum amplitude excursions and (2) seismic analysis at tuning frequencies. With well-log models, we observed that the frequency-dependent tuning response is primarily dependent on the lithology stacking pattern of a reservoir; in the cases studied, the fluid and reservoir quality have secondary effects on the frequency dependence of the amplitudes. We evaluate synthetic models and field data from the Columbus Basin, Trinidad, to illustrate our frequency-dependent seismic analysis methods. For one of the sandstone reservoirs, a frequency-dependent attribute indicates better spatial resolution of the anomaly than a conventional amplitude extraction. FAVO attributes are complementary to conventional AVO attributes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3