Surface-related multiple leakage extraction using local primary-and-multiple orthogonalization

Author:

Zhang Dong1ORCID,Verschuur D. J. (Eric)1,Qu Shan1ORCID,Chen Yangkang2ORCID

Affiliation:

1. Delft University of Technology, Department of Imaging Physics, Lorentzweg 1, 2628CJ, Delft, The Netherlands.(corresponding author); .

2. Zhejiang University, School of Earth Sciences, Hangzhou, China..

Abstract

Accurate multiple removal remains an important step in seismic data processing sequences. Most multiple removal methods, such as surface-related multiple elimination (SRME), consist of a multiple prediction step and an adaptive subtraction step. Due to imperfect circumstances (e.g., coarse data sampling) or built-in assumptions (e.g., 2D method versus 3D data), multiple leakage is commonly observed in the results. More aggressive adaptive multiple subtraction can reduce the leakage problem, for example, by using small local windows and a long filter length, but at the risk of severely damaging the primaries due to overfitting. In contrast, conservative adaptive subtraction with large or global windows and a short filter length can preserve most primary energy while tending to have more multiple leakage because of underfitting. Assuming that the primaries and multiples do not correlate locally in the time-space domain, our solution to this problem is to extract the leaked multiples from the initially estimated primaries using local primary-and-multiple orthogonalization (LPMO) rather than restoring the damaged primaries. Our framework consists of two steps: an initial primary estimation step and a multiple leakage extraction step. The initial step corresponds to conservative SRME (or an equivalent method) that produces the initially estimated primary and multiple models. The second step is based on LPMO to retrieve the leaked multiples from the estimated primaries via a time- and space-varying weight function that is estimated from the local correlation of predicted multiples and residual multiples in the estimated primaries with the help of shaping regularization. In this way, we can obtain a better primary model that has much less leaked multiple energy and less primary damage at the same time. We find good performance of our framework via two synthetic data examples and one field data example.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3