Integrated geophysical imaging of rare earth element-bearing iron oxide-apatite deposits in the Eastern Adirondack Highlands, New York

Author:

Shah Anjana K.1ORCID,Taylor Ryan D.1ORCID,Walsh Gregory J.2,Phillips Jeffrey D.1

Affiliation:

1. U.S. Geological Survey, Geology, Geophysics and Geochemistry Science Center, Denver, Colorado 80225, USA.(corresponding author); .

2. U.S. Geological Survey, Florence Bascom Science Center, Montpellier, Vermont 05602, USA..

Abstract

The eastern Adirondack Highlands of northern New York host dozens of iron oxide-apatite (IOA) deposits containing magnetite and rare earth element (REE)-bearing apatite. We use new aeromagnetic, aeroradiometric, ground gravity, and sample petrophysical and geochemical data to image and understand these deposits and their geologic framework. Aeromagnetic total field data reflect highly magnetic leucogranite host rock and major structures that likely served as fluid conduits for the hydrothermal system. Band-pass filtering of the aeromagnetic data reveals locations of individual deposits that were verified in the field or from historical records. A 3D inversion for magnetic susceptibility images these deposits at depth, allowing the inference of plunge directions and relative size. Radiometric data highlight variations in the surface geology and several large tailings piles that contain REE-bearing apatite. Within the host rock, eTh (equivalent Th), K, and the eTh/K ratio are variable with high eTh/K near several of the IOA deposits. Areas with elevated K or low eTh/K representing potassic alteration appear to be rare; instead, elevated eTh/K ratios likely reflect widespread sodic alteration that overprinted potassic alteration. Bouguer gravity anomalies show limited correspondence to the surface geology, radiometric data, or magnetic data, but they do exhibit approximately 10 km wide highs in areas where deposits are observed. Some 2D forward models of the gravity and magnetic data show that deeper dense material beneath the leucogranite is quantitatively feasible. If these dense rocks represent intrusions that were emplaced or still cooling at the time of mineralization, they may have served as a heat source that helped to drive the hydrothermal system. Combining data sets, we find that deposits occur toward the distal ends of major structures within the host leucogranite and mostly above gravity highs. The geophysical modeling thus suggests that IOA deposits formed in structural, thermal, and chemical traps near the distal ends of the hydrothermal system.

Funder

U.S. Geological Survey

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3