A modified numerical-flux-based discontinuous Galerkin method for 2D wave propagations in isotropic and anisotropic media

Author:

He Xijun1ORCID,Yang Dinghui2,Ma Xiao3ORCID,Qiu Chujun2ORCID

Affiliation:

1. Beijing Technology and Business University (BTBU), School of Mathematics and Statistics, Beijing 100048, China..

2. Tsinghua University, Department of Mathematics, Beijing 100084, China.(corresponding author); .

3. Northwestern Polytechnical University, Department of Applied Mathematics, Xi’an 710072, China..

Abstract

We have developed a new discontinuous Galerkin (DG) method to solve the 2D seismic wave equations in isotropic and anisotropic media. This method uses a modified numerical flux that is based on a linear combination of the Godunov and the centered fluxes. A weighting factor is introduced in this modified numerical flux that is expected to be optimized to some extent. Through the investigations on the considerations of numerical stability, numerical dispersion, and dissipation errors, we develop a possible choice of optimal weighting factor. Several numerical experiments confirm the effectiveness of the proposed method. We evaluate a convergence test based on cosine wave propagation without the source term, which shows that the numerical errors in the modified flux-based DG method and the Godunov-flux-based method are quite similar. However, the improved computational efficiency of the modified flux over the Godunov flux can be demonstrated only at a small sampling rate. Then, we apply the proposed method to simulate the wavefields in acoustic, elastic, and anisotropic media. The numerical results show that the modified DG method produces small numerical dispersion and obtains results in good agreement with the reference solutions. Numerical wavefield simulations of the Marmousi model show that the proposed method also is suitable for the heterogeneous case.

Funder

National Key R&D Program on Mornitoring, Early Warning and Prevention of Major Natural Disasters

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3