Generalized positivity constraint on magnetic equivalent layers

Author:

Reis André L. A.1ORCID,Oliveira Jr. Vanderlei C.1ORCID,Barbosa Valéria C. F.1ORCID

Affiliation:

1. Observatório Nacional, Rio de Janeiro 20921-400, Brazil.(corresponding author); .

Abstract

It is known from the potential theory that a continuous and planar layer of dipoles can exactly reproduce the total-field anomaly produced by arbitrary 3D sources. We have proven the existence of an equivalent layer having an all-positive magnetic-moment distribution for the case in which the magnetization direction of this layer is the same as that of the true sources, regardless of whether the magnetization of the true sources is purely induced or not. By using this generalized positivity constraint, we have developed a new iterative method for estimating the total magnetization direction of 3D magnetic sources based on the equivalent-layer technique. Our method does not impose a priori information about the shape or the depth of the sources, does not require regularly spaced data, and presumes that the sources have a uniform magnetization direction. At each iteration, our method performs two steps. The first step solves a constrained linear inverse problem to estimate a positive magnetic-moment distribution over a discrete equivalent layer of dipoles. We consider that the equivalent sources are located on a plane and have a uniform and fixed magnetization direction. In the second step, we use the estimated magnetic-moment distribution and solve a nonlinear inverse problem for estimating a new magnetization direction for the dipoles. The algorithm stops when the equivalent layer yields a total-field anomaly that fits the observed data. Tests with synthetic data simulating different geologic scenarios show that the final estimated magnetization direction is close to the true one. We apply our method to field data from the Goiás alkaline province, over the Montes Claros complex, in the center of Brazil. The results suggest the presence of intrusions with remarkable remanent magnetization, in agreement with the current literature for this region.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3