Modeling and data-driven isolation of two-way wavefield constituents

Author:

Elison Patrick1ORCID,Börsing Nele1,van Manen Dirk-Jan1ORCID,Robertsson Johan O. A.1ORCID

Affiliation:

1. ETH Zürich, Department of Earth Sciences, Zürich, Switzerland.(corresponding author); .

Abstract

Synthesizing individual wavefield constituents (such as primaries, first-order scattering, and free-surface or internal multiples) is important in the development of seismic data processing algorithms, for instance, for seismic multiple removal and imaging. A range of methods that allow for the computation of such wavefield constituents exist, but they are generally restricted to relatively simple, horizontally layered media. For wave simulations on more complex models, a straightforward and performant alternative are finite-difference methods. They are, however, generally not perceived as being capable of delivering isolated wavefield constituents. Based on recent advances, we found how this can be achieved for (nonhorizontally) piecewise constant layered media. For example, we were able to accurately retrieve the isolated direct arrival of the transmission response (including tunneled waves), primary reflection data (without internal multiples), and all events related to a single (or multiple) interface(s) in a medium. Our methods required detailed knowledge of discretized medium parameters. Alternatively, if a medium is known only implicitly via recordings of reflection data, interface-related events can still be isolated through a combination of subdomain-related wavefields. We found how Marchenko redatuming can be used to derive these, which enables data-driven identification (and removal) of interface-related events from surface data.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3