A weighted Runge-Kutta discontinuous Galerkin method for reverse time migration

Author:

Qiu Chujun1ORCID,Yang Dinghui1,He Xijun2ORCID,Li Jingshuang3ORCID

Affiliation:

1. Tsinghua University, Department of Mathematical Sciences, Beijing 100084, China.(corresponding author).

2. Beijing Technology and Business University, School of Mathematics and Statistics, Beijing 100048, China..

3. China University of Mining and Technology (Beijing), School of Science, Beijing 100083, China..

Abstract

Reverse time migration (RTM) is widely used in the industry because of its ability to handle complex geologic models including steeply dipping interfaces. The quality of images produced by RTM is significantly influenced by the performance of the numerical methods used to simulate the wavefields. Recently, a weighted Runge-Kutta discontinuous Galerkin (WRKDG) method has been developed to solve the wave equation, which is stable, explicit, and efficient in parallelization and suppressing numerical dispersion. By incorporating two different weights for the time discretization, we have obtained a more stable method with a larger time sampling. We apply this numerical method to RTM to handle complex topography and improve imaging quality. By comparing it to the high-order Lax-Wendroff correction method, we determine that WRKDG is efficient in RTM. From the results of the Sigsbee2B data, we can find that our method is efficient in suppressing artifacts and can produce images of good quality when coarse meshes are used. The RTM results of the Canadian Foothills model also demonstrate its ability in handling complex geometry and rugged topography.

Funder

Statoil Company

National Natural Science Foundation of China

National RD Program on Monitoring

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3