Improving the image quality of elastic reverse-time migration in the dip-angle domain using deep learning

Author:

Lu Yongming1ORCID,Sun Hui2ORCID,Wang Xiaoyi2ORCID,Liu Qiancheng3ORCID,Zhang Hao4ORCID

Affiliation:

1. Southern University of Science and Technology, Department of Earth and Space Sciences, Shenzhen 518055, China and University of Science and Technology of China, School of Earth and Space Sciences, Hefei 230026, China.

2. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Petroleum Resources Research, Beijing 100029, China.(corresponding author); .

3. Princeton University, Department of Geosciences, Princeton, New Jersey 08544, USA..

4. Chinese Academy of Geological Sciences, Institute of Geomechanics, Beijing 100081, China..

Abstract

Elastic reverse-time migration (ERTM) is becoming increasingly feasible with the development of high-performance computing. It can provide more physical information on subsurface structures. However, the crosstalk artifacts degrade the imaging resolution of ERTM. To obtain high-resolution ERTM imaging, we have developed additional constraints through a convolutional neural network (CNN) in the dip-angle domain. This procedure can significantly improve the image quality of ERTM by recognizing the dominant reflection events and rejecting the crosstalk artifacts in the dip-angle domain. This method can be divided into the following three steps. First, we generate the dip-angle gathers of ERTM using Poynting vectors shot by shot. Then, we stack all the dip-angle gathers over all the shots. Finally, we adopt the CNN to predict the dip-angle constraint, which can suppress the crosstalk artifacts and enhance the ERTM image quality. The picking method using CNN is an end-to-end procedure that can perform automatic picking without additional human intervention once the network is well-trained. The numerical examples have verified the potential of our method.

Funder

China Postdoctoral Science Foundation

National Natural Science Fund of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3