Seismic imaging of S-wave structures of shallow sediments in the East China Sea using OBN multicomponent Scholte-wave data

Author:

Wang Yuan1ORCID,Li Zhiwei2ORCID,Geng Jianhua3ORCID,You Qingyu4,Hao Tianyao4,Hu Yaoxing1,Zhao Chunlei1,Zhang Yan1,Liu Yuzhu3ORCID

Affiliation:

1. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Petroleum Resources Research, Beijing 100029, China and Chinese Academy of Sciences, Innovation Academy for Earth Science, Beijing 100029, China..

2. Beijing Institute of Spacecraft Environment Engineering, Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing 100094, China.(corresponding author).

3. Tongji University, State Key Laboratory of Marine Geology, Shanghai 200092, China..

4. Chinese Academy of Sciences, Institute of Geology and Geophysics, Key Laboratory of Petroleum Resources Research, Beijing 100029, China, Chinese Academy of Sciences, Innovation Academy for Earth Science, Beijing 100029, China and University of Chinese Academy of Sciences, Beijing 100049, China..

Abstract

The shear-wave (S-wave) structures of shallow marine sediments are important for offshore geotechnical studies, deep crustal S-wave imaging, multicomponent seismic exploration, and underwater acoustics studies. We have applied the multicomponent Scholte-wave analysis technique to an active-source shallow marine seismic profile in the East China Sea. Scholte waves have been excited by shots from a 5450 inch3 air-gun array and their recordings have been conducted at the seafloor using ocean bottom nodes (OBNs). First, we extract the common-receiver gathers (CRGs) and correct for the time drift simultaneously using a forward and inverse fast Fourier transform resampling algorithm. Three CRGs of seismic sensors are used for Scholte-wave analysis. Raw sensor CRGs are rotated to the inline, crossline, and vertical coordinate system. The rotated tilt and roll angle are directed using the inner electric compass log value, and the shot inline azimuth is estimated using the particle motion method. Then, the velocity spectra are calculated from the inline and vertical components using the phase-shift method. Higher Scholte-wave modes dominate on the horizontal components, whereas the stronger fundamental mode dominates on the vertical components. The multicomponent velocity spectrum stacking method is adopted to produce the final dispersion energy image. Up to four modes of dispersion curves are retrieved within the 1.1–4.3 Hz frequency band. The multimode dispersion curve inversion is constructed for imaging the shallow sediments. The results suggest a low [Formula: see text] of 180–650 m/s and few lateral variations within the top 0.5 km of shallow marine sediments in the East China Sea. This model can provide an important reference for offshore geotechnical investigations, especially for OBN multicomponent seismic exploration data processing. The use of OBNs has high feasibility in [Formula: see text] imaging for shallow marine sediments when combined with the Scholte-wave dispersion-curve inversion.

Funder

National Key RD Program of China

Key deployment project of Center for Ocean Mega-Science of CAS

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3