Building large-scale density model via a deep-learning-based data-driven method

Author:

Gao Zhaoqi1ORCID,Li Chuang1ORCID,Zhang Bing1,Jiang Xiudi2,Pan Zhibin3,Gao Jinghuai1ORCID,Xu Zongben4

Affiliation:

1. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, Shaanxi 710049, China and Xi’an Jiaotong University, National Engineering Laboratory for Offshore Oil Exploration, Xi’an, Shaanxi 710049, China.(corresponding author); .

2. CNOOC Research Institute, Beijing 100028, China..

3. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, Shaanxi 710049, China..

4. Xi’an Jiaotong University, School of Mathematics and Statistics, Xi’an, Shaanxi 710049, China..

Abstract

As a rock-physics parameter, density plays a crucial role in lithology interpretation, reservoir evaluation, and description. However, density can hardly be directly inverted from seismic data, especially for large-scale structures; thus, additional information is needed to build such a large-scale model. Usually, well-log data can be used to build a large-scale density model through extrapolation; however, this approach can only work well for simple cases and it loses effectiveness when the medium is laterally heterogeneous. We have adopted a deep-learning-based method to build a large-scale density model based on seismic and well-log data. The long short-term memory network is used to learn the relation between seismic data and large-scale density. Except for the data pairs directly obtained from well logs, many velocity and density models randomly generated based on the statistical distributions of well logs are also used to generate several pairs of seismic data and the corresponding large-scale density. This can greatly enlarge the size and diversity of the training data set and consequently leads to a significant improvement of the proposed method in dealing with a heterogeneous medium even though only a few well logs are available. Our method is applied to synthetic and field data examples to verify its performance and compare it with the well extrapolation method, and the results clearly display that the proposed method can work well even though only a few well logs are available. Especially in the field data example, the built large-scale density model of the proposed method is improved by 11.9666 dB and 0.6740, respectively, in peak signal-to-noise ratio and structural similarity compared with that of the well extrapolation method.

Funder

National Science and Technology Major Project

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

National Key RD Program of the Ministry of Science and Technology of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference37 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems. (Software available from tensorflow.org).

2. Addressing viscous effects in acoustic full-waveform inversion

3. Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization

4. Deep-learning tomography

5. Artificial neural network forward modelling and inversion of electrokinetic logging data

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3