Linear‐transform techniques for processing shear‐wave anisotropy in four‐component seismic data

Author:

Li Xiang‐Yang1,Crampin Stuart2

Affiliation:

1. Edinburgh Anisotropy Project, British Geological Survey, Murchison House West Mains Rd., Edinburgh EH9 3LA, Scotland, United Kingdom

2. Edinburgh Anisotropy Project, British Geological Survey, Murchison House West Mains Rd., Edinburgh EH9 3LA, Scotland, United Kingdom; Dept. of Geology and Geophysics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh, EH9 3JZ, Scotland, United Kingdom

Abstract

Most published techniques for analyzing shear‐wave splitting tend to be computing intensive, and make assumptions, such as the orthogonality of the two split shear waves, which are not necessarily correct. We present a fast linear‐transform technique for analyzing shear‐wave splitting in four‐component (two sources/ two receivers) seismic data, which is flexible and widely applicable. We transform the four‐component data by simple linear transforms so that the complicated shear‐wave motion is linearized in a wide variety of circumstances. This allows various attributes to be measured, including the polarizations of faster split shear waves and the time delays between faster and slower split shear waves, as well as allowing the time series of the faster and slower split shear waves to be separated deterministically. In addition, with minimal assumptions, the geophone orientations can be estimated for zero‐offset verticle seismic profiles (VSPs), and the polarizations of the slower split shear waves can be measured for offset VSPs. The time series of the split shear‐waves can be separated before stack for reflection surveys. The technique has been successfully applied to a number of field VSPs and reflection data sets. Applications to a zero‐offset VSP, an offset VSP, and a reflection data set will be presented to illustrate the technique.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3