Affiliation:
1. Schlumberger-Doll Research, Cambridge, Massachusetts, U.S.A. .
Abstract
We present a simultaneous multifrequency inversion approach for seismic data interpretation. This algorithm inverts all frequency data components simultaneously. A data-weighting scheme balances the contributions from different frequency data components so the inversion process does not become dominated by high-frequency data components, which produce a velocity image with many artifacts. A Gauss-Newton minimization approach achieves a high convergence rate and an accurate reconstructed velocity image. By introducing a modified adjoint formulation, we can calculate the Jacobian matrix efficiently, allowing the material properties in the perfectly matched layers (PMLs) to be updated automatically during the inversion process. This feature ensures the correct behavior of the inversion and implies that the algorithm is appropriate for realistic applications where a priori information of the background medium is unavailable. Two different regularization schemes, an [Formula: see text]-norm and a weighted [Formula: see text]-norm function, are used in this algorithm for smooth profiles and profiles with sharp boundaries, respectively. The regularization parameter is determined automatically and adaptively by the so-called multiplicative regularization technique. To test the algorithm, we implement the inversion to reconstruct the Marmousi velocity model using synthetic data generated by the finite-difference time-domain code. These numerical simulation results indicate that this inversion algorithm is robust in terms of starting model and noise suppression. Under some circumstances, it is more robust than a traditional sequential inversion approach.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献