Simultaneous multifrequency inversion of full-waveform seismic data

Author:

Hu Wenyi1,Abubakar Aria1,Habashy Tarek M.1

Affiliation:

1. Schlumberger-Doll Research, Cambridge, Massachusetts, U.S.A. .

Abstract

We present a simultaneous multifrequency inversion approach for seismic data interpretation. This algorithm inverts all frequency data components simultaneously. A data-weighting scheme balances the contributions from different frequency data components so the inversion process does not become dominated by high-frequency data components, which produce a velocity image with many artifacts. A Gauss-Newton minimization approach achieves a high convergence rate and an accurate reconstructed velocity image. By introducing a modified adjoint formulation, we can calculate the Jacobian matrix efficiently, allowing the material properties in the perfectly matched layers (PMLs) to be updated automatically during the inversion process. This feature ensures the correct behavior of the inversion and implies that the algorithm is appropriate for realistic applications where a priori information of the background medium is unavailable. Two different regularization schemes, an [Formula: see text]-norm and a weighted [Formula: see text]-norm function, are used in this algorithm for smooth profiles and profiles with sharp boundaries, respectively. The regularization parameter is determined automatically and adaptively by the so-called multiplicative regularization technique. To test the algorithm, we implement the inversion to reconstruct the Marmousi velocity model using synthetic data generated by the finite-difference time-domain code. These numerical simulation results indicate that this inversion algorithm is robust in terms of starting model and noise suppression. Under some circumstances, it is more robust than a traditional sequential inversion approach.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference55 articles.

1. Abubakar, A., T. Habashy, D. Alumbaugh, P. Zhang, G. Gao, and J. Liu, 2007, Characterizing an earth subterranean structure by iteratively performing inversion based on a function: U.S. Patent 11/769 031.

2. Towards non-linear inversion for characterization of time-lapse phenomena through numerical modelling

3. A perfectly matched layer for the absorption of electromagnetic waves

4. Multiscale seismic waveform inversion

5. A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3