Improved resolution in Bayesian lithology/fluid inversion from prestack seismic data and well observations: Part 1 — Methodology

Author:

Ulvmoen Marit1,Omre Henning1

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway. .

Abstract

The focus of our study is lithology/fluid inversion with spatial coupling from prestack seismic amplitude variation with offset (AVO) data and well observations. The inversion is defined in a Bayesian setting where the complete solution is the posterior model. The prior model for the lithology/fluid (LF) characteristics is defined as a profile Markov random-field model with lateral continuity. Each vertical profile is further given as an inhomogeneous Markov-chain model upward through the reservoir. The likelihood model is defined by profile, and it relates the LF characteristics to the seismic data via a set of elastic material parameters and a convolution model. The likelihood model is approximated. The resulting approximate posterior model is explored using an efficient block Gibbs simulation algorithm. The inversion approach is evaluated on a synthetic realistic 2D reservoir. Seismic AVO data and well observations are integrated in a consistent manner to obtain predictions of the LF characteristics with associated uncertainty statements. The predictions appear very reliable despite the approximation of the posterior model, and errors in seismic data are the major contributions to the uncertainty. Resolution of the inversion is improved considerably by using a spatially coupled prior LF model, and LF units of [Formula: see text] thick can be identified even with a seismic signal-to-noise ratio of two. The inversion results appear robust toward varying model parameter values in the prior model as a result of the discretization of LF characteristics and seismic data with good spatial coverage.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3