A comparison of random and periodic marine simultaneous-source encoding

Author:

Halliday David F.1,Moore Ian2

Affiliation:

1. Schlumberger Cambridge Research, Cambridge, United Kingdom..

2. WesternGeco, Queenstown, New Zealand..

Abstract

Separation algorithms for marine simultaneous-source data generally require encoded sources. Proposed encoding schemes include random time delays (time dithers), periodic time sequences (such as those referred to as seismic apparition), and periodic phase sequences (for sources with fully controlled phase like a marine vibrator). At a given frequency, time dithers spread energy at a given wavenumber over all wavenumbers, phase sequences shift the energy by a fixed wavenumber (independent of frequency), and time sequences split energy over multiple wavenumbers in a frequency-dependent way. The way the encoding scheme distributes energy in the wavenumber domain is important because separation algorithms generally assume that, in the absence of encoding, all energy falls into the signal cone. Time dithering allows separation by inversion. At low frequencies, the inverse problem is overdetermined and easily solved. At higher frequencies, sparse inversion works well, provided the data exhibit a sufficiently sparse representation (consistent with compressive sensing theory). Phase sequencing naturally separates the sources in the wavenumber domain at low frequencies. At higher frequencies, ambiguities must be resolved using assumptions such as limited dispersion and limited complexity. Time sequencing allows a simple separation at low frequencies based on a scaling and subtraction process in the wavenumber domain. However, the scaling becomes unstable near notch frequencies, including DC. At higher frequencies, a similar problem to that for phase sequencing must be solved. The encoding schemes, therefore, have similar overall properties and require similar assumptions, but differ in some potentially important details. Phase sequencing is clearly only applicable to phase-controllable sources, and the different encoding schemes have other implications for data acquisition, for example, with respect to operational complexity, efficiency, spatial sampling, and tolerance to errors.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling the seismic wavefield of moving marine vibrator source;GEOPHYSICS;2023-12-11

2. Modeling the seismic wavefield of moving marine vibrator source;GEOPHYSICS;2023-12-11

3. The influence of simultaneous-source survey parameters on deblending performance;Journal of Applied Geophysics;2022-11

4. Dither scheme design and application for marine blended acquisition;Second International Meeting for Applied Geoscience & Energy;2022-08-15

5. Deblending for Hybrid Simultaneous-Source Data;IEEE Transactions on Geoscience and Remote Sensing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3