Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica

Author:

Foley Neil1,Tulaczyk Slawek1,Auken Esben2,Schamper Cyril3,Dugan Hilary4,Mikucki Jill5,Virginia Ross6,Doran Peter7

Affiliation:

1. University of California, Earth and Planetary Sciences, Santa Cruz, California, USA..

2. Aarhus University, Department of Geosciences, Aarhus Denmark..

3. Sorbonne Universités, UMR 7619 METIS, UPMC Univ Paris 06, Paris, France..

4. University of Wisconsin, Center for Limnology, Madison, Wisconsin, USA..

5. Middlebury College, Department of Biology, Middlebury, Vermont, USA..

6. Dartmouth College, Environmental Studies Program, Hanover, New Hampshire, USA..

7. Louisiana State University, Department of Geology and Geophysics, Baton Rouge, Louisiana, USA..

Abstract

The McMurdo Dry Valleys are a polar desert in coastal Antarctica, where glaciers, permafrost, ice-covered lakes, and ephemeral summer streams coexist. Liquid water is found at the surface only in lakes and in the temporary streams that feed them. Past geophysical exploration has yielded ambiguous results regarding the presence of subsurface water. In 2011, we used a helicopter-borne, time-domain electromagnetic (TDEM) sensor to map resistivity in the subsurface across the Dry Valleys. The airborne electromagnetic (AEM) method excels at finding subsurface liquid water in polar deserts, where water remains liquid under cold conditions if it is sufficiently saline, and therefore electrically conductive. Over the course of 26 h of helicopter time, we covered large portions of the Dry Valleys and vastly increased our geophysical understanding of the subsurface, particularly with respect to water. Our data show extensive subsurface low-resistivity layers approximately 150–250 m below the surface and beneath higher resistivity layers. We interpret the low-resistivity layers as geologic materials containing freeze-concentrated or “cryoconcentrated” hyper saline brines lying beneath glaciers and frozen permafrost. These brines appeared to be contiguous with surface lakes, subglacial regions, and the Ross Sea, which could indicate a regional-hydrogeologic system, wherein solutes might be transported between surface reservoirs by ionic diffusion and subsurface flow. The presence of such brines underneath glaciers might have implications for glacier movement. Systems such as this, where brines exist beneath glacial ice and frozen permafrost, may exist elsewhere in coastal Antarctica; AEM resistivity is an ideal tool to find and survey them. Our application of TDEM demonstrates that in polar subsurface environments containing conductive brines, such a diffusive electromagnetic method is superior to radar surveying in terms of depth of penetration and ability to differentiate hydrogeologic conditions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3