Models and methods for predicting hydraulic conductivity in near-surface unconsolidated sediments using nuclear magnetic resonance

Author:

Maurer Jeremy1,Knight Rosemary1

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA..

Abstract

Nuclear magnetic resonance (NMR) logging provides a relatively new approach for estimating the hydraulic conductivity [Formula: see text] of unconsolidated aquifers. We have evaluated results from model validation and uncertainty quantification using direct-push measurements of NMR mean relaxation times and [Formula: see text] in sands and gravels at three field sites. We have tested four models that have been proposed for predicting [Formula: see text] from NMR data, including the Schlumberger-Doll research, Seevers, and sum-of-echoes equations, all of which use empirically determined constants, as well as the Kozeny-Godefroy model, which predicts [Formula: see text] from several physical parameters. We have applied four methods of analysis to reanalyze NMR and [Formula: see text] data from the three field sites to quantify how well each model predicted [Formula: see text] from the mean log NMR relaxation time [Formula: see text] given the uncertainties in the data. Our results show that NMR-estimated porosity does not improve prediction of [Formula: see text] in our data set for any model and that all of the models can predict [Formula: see text] to within an order of magnitude using the calibrated constants we have found. We have shown the value of rigorous uncertainty quantification using the methods we used for analyzing [Formula: see text]-NMR data sets, and we have found that incorporating uncertainty estimates in our analysis gives a more complete understanding of the relationship between NMR-derived parameters and hydraulic conductivity than can be obtained through simple least-squares fitting. There is little variability in our data set in the calibrated constants we find, given the uncertainty present in the data, and therefore we suggest that the constants we find could be used to obtain first-order estimates of hydraulic conductivity in unconsolidated sands and gravels at new sites with NMR data available.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference38 articles.

1. Calibration of Permeability Derived from NMR Logs in Carbonate Reservoirs

2. Arnold, J., C. Clauser, R. Pechnig, C. S. Anferova, V. Anferov, and B. Blümich, 2006, Porosity and permeability from mobile NMR core-scanning: Presented at the SPWLA 47, 306–314.

3. Markov Chain Monte Carlo Simulations

4. Importance of classical diffusion in NMR studies of water in biological cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3