Conditional reconstruction: An alternative strategy in digital rock physics

Author:

Karimpouli Sadegh1,Tahmasebi Pejman2

Affiliation:

1. University of Zanjan, Mining Engineering Group, Zanjan, Iran..

2. University of Southern California, Mork Family Department of Chemical Engineering and Materials Science, Los Angeles, California, USA and California Institute of Technology, Division of Engineering and Applied Science, Mechanical and Civil Engineering, Pasadena, California, USA..

Abstract

Digital rock physics (DRP) is a newly developed method based on imaging and digitizing of 3D pore and mineral structure of actual rock and numerically computing rock physical properties, such as permeability, elastic moduli, and formation factor. Modern high-resolution microcomputed tomography scanners are used for imaging, but these devices are not widely available, and 3D imaging is also costly and it is a time-consuming procedure. However, recent improvements of 3D reconstruction algorithms such as crosscorrelation-based simulation and, on the other side, the concept of rock physical trends have provided some new avenues in DRP. We have developed a modified work flow using higher order statistical methods. First, a high-resolution 2D image is divided into smaller subimages. Then, different stochastic subsamples are generated based on the provided 2D subimages. Eventually, various rock physical parameters are calculated. Using several subsamples allows extracting rock physical trends and better capturing the heterogeneity and variability. We implemented our work flow on two DRP benchmark data (Berea sandstone and Grosmont carbonate) and a thin-section image from the Grosmont carbonate formation. Results of realization models, pore network modeling, and autocorrelation functions for the real and reconstructed subsamples reveal the validity of the reconstructed models. Furthermore, the agreement between static and dynamic methods indicates that subsamples are representative volume elements. Average values of the subsamples’ properties follow the reference trends of the rock sample. Permeability trends pass the actual results of the benchmark samples; however, elastic moduli trends find higher values. The latter can be due to image resolution and voxel size, which are generated by imaging tools and reconstruction algorithms. According to the obtained results, this strategy can be introduced as a valid and accurate method where an alternative method for standard DRP is needed.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3