Bounds of elastic parameters characterizing transversely isotropic media: Application to shales

Author:

Holt Rune M.1

Affiliation:

1. NTNU (Norwegian University of Science and Technology), Trondheim, Norway..

Abstract

Several rocks, and in particular shales, are often described as transversely isotropic (TI) materials. Geophysical data coverage does not always permit reliable determination of all five elastic parameters, neither in seismic and sonic data from the field nor in laboratory measurements. Data may, however, be constrained by the existence of bounds on elastic moduli, derived from the fundamental requirement of positive elastic energy. Conditioned bounds are described for engineering parameters such as Poisson’s ratios as well as anisotropy coefficients such as the moveout parameter [Formula: see text] and the anellipticity parameter [Formula: see text]. “Conditioned bounds” means bounds that in general depend on some of the other elastic moduli: The bounds we have evaluated are controlled primarily by P- and S-wave moduli obtained from wave propagation along a symmetry axis and to some extent by P- and S-wave anisotropies. Such data may be acquired more easily from geophysical measurements. We have inspected the laboratory data obtained with various types of shales under different testing conditions, and none of them failed to adapt to the bounds. The data indicate, for instance, clear distinctions between how the proximity to bounds is driven by stress changes for saturated versus nonsaturated shales.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference28 articles.

1. Velocity analysis for transversely isotropic media

2. Rock Anisotropy and the Theory of Stress Measurements

3. Bauer, A., D. Szewczyk, J. Hedegaard, and R. M. Holt, 2015, Seismic dispersion in Mancos Shale: Presented at the 3rd International Workshop on Rock Physics.

4. Evaluation of anisotropy by shear‐wave splitting

5. Do traveltimes in pulse‐transmission experiments yield anisotropic group or phase velocities?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3