A simple hydromechanical approach for simulating squirt-type flow

Author:

Quintal Beatriz1,Rubino J. Germán2,Caspari Eva1,Holliger Klaus1

Affiliation:

1. University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland..

2. Formerly University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland; presently University of Western Ontario, Department of Earth Sciences, London, Ontario, Canada..

Abstract

The deformations caused by an acoustic wavefield in subsurface rock can induce fluid flow within hydraulically interconnected mesoscopic fractures, from one fracture into the other. The viscous friction associated with this squirt-type fluid flow parallel to the fracture walls results in energy dissipation and velocity dispersion. We have developed a quasi-static hydromechanical approach that is suitable for simulating squirt-type flow in the mesoscopic scale range and microscopic squirt flow. Our approach couples Navier-Stokes equation with Hooke’s law to describe the laminar flow of a viscous compressible fluid in conduits embedded in an elastic solid background. Results from the proposed method were compared with those obtained with Biot’s equations for a model containing interconnected mesoscopic fractures embedded in a background of very low porosity and permeability. Despite significant differences in the flow and dissipation spatial patterns, we have observed an essentially perfect agreement of the attenuation and modulus dispersion characteristics predicted by the two approaches. The difference in the flow and dissipation spatial patterns are associated with the “upscaling” inherent to Biot’s equations and, correspondingly, with differing boundary conditions at the fracture walls. Our results demonstrate that the proposed hydromechanical approach can provide additional insights on the physics of squirt-type flow in the mesoscopic and microscopic scale ranges.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3