Ultrasonic velocity and attenuation anisotropy of shales, Whitby, United Kingdom

Author:

Zhubayev Alimzhan1,Houben Maartje E.2,Smeulders David M. J.3,Barnhoorn Auke4

Affiliation:

1. Formerly Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands; presently NAM-Shell Projects and Technology, Assen, The Netherlands..

2. Utrecht University, Faculty of Geosciences, Utrecht, The Netherlands..

3. Eindhoven University of Technology, Department of Mechanical Engineering, Eindhoven, The Netherlands..

4. Delft University of Technology, Department of Geoscience and Engineering, Delft, The Netherlands..

Abstract

We have conducted ultrasonic experiments, between 0.3 and 1 MHz, to measure velocity and attenuation ([Formula: see text]) anisotropy of P- and S-waves in dry Whitby Mudstone samples as a function of stress. We found the degree of anisotropy to be as large as 70% for velocity and attenuation. The sensitivity of P-wave anisotropy change with applied stress is more conspicuous than for S-waves. The closure of large aspect-ratio pores (and/or micro cracks) seems to be a dominant mechanism controlling the change of anisotropy. Generally, the highest attenuation is perceived for samples that have their bed layering perpendicular ([Formula: see text]) to the wave path. The observed attenuation in the samples is partly due to the scattering on the different layers, and it is partly due to the intrinsic attenuation. Changes in attenuation due to crack closure during the loading stage of the experiment are an indication of the intrinsic attenuation. The remaining attenuation can then be attributed to the layer scattering. Finally, the changes in attenuation anisotropy with applied stress are more dynamic with respect to changes in velocity anisotropy, supporting the validity of a higher sensitivity of attenuation to rock property changes.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3